Контакты
Подписка
МЕНЮ
Контакты
Подписка

Определение угла обзора с помощью универсального калькулятора BEWARD

В рубрику "Видеонаблюдение (CCTV)" | К списку рубрик  |  К списку авторов  |  К списку публикаций

Определение угла обзора с помощью универсального калькулятора BEWARD

Планируя развернуть систему видеонаблюдения, вы неизбежно задаетесь вопросами: куда и сколько установить камер? Как определить наилучшие места их расположения, чтобы избежать «слепых зон»? На каком расстоянии от объектов наблюдения установить камеры, чтобы в итоге получилось достаточно четкое изображение нужных деталей?

На вид и качество изображения большое влияние оказывают не только параметры видеокамеры и объектива, но и их правильное сочетание. Так, иногда отличный, дорогой объектив может давать даже худшее изображение, чем альтернативная дешевая модель.

Расскажем об основных факторах, влияющих на качество и масштаб видеоизображения, которые следует учитывать при выборе объектива для камеры, чтобы по максимуму использовать их возможности и при этом избежать ненужных затрат. 

Угол обзора объектива

Одной из важных характеристик систем видеонаблюдения является угол обзора объектива. От него напрямую зависит количество и возможные места установки камер на объекте. Угол обзора объектива определяет величину видимого объекта и масштаб изображения в кадре. 
Рис. 1. Оптическая схема получения изображения на матрице

Из этой схемы видно, что на величину угла обзора напрямую влияет не только фокусное расстояние объектива, но и размеры матрицы:

И если с фокусное расстояние определить довольно легко, зная модель объектива, то с размером матриц не все так просто.  

Размер матрицы видеокамеры

В зависимости от соотношения сторон (4:3 или 16:9), у матриц с одной и той же диагональю физические размеры различны (Таблица 1). Поэтому, например, камера на матрице 1/3’’ с соотношением сторон 4:3 дает больший угол обзора по вертикали и меньший по горизонтали, чем камера на матрице с такой же диагональю, но соотношением 16:9.


Таблица 1. Зависимость физических размеров матрицы от соотношения сторон

В целях облегчения подбора совместимой оптики и расчета углов обзора обычно заявляют ближайшее из стандартных значений для диагонали матрицы: 1’’, 1/2’’, 1/2.5’’, 1/2.7’’, 1/2.8’’, 1/3’’, 1/4’’. При этом измерять ее принято в видиконовых дюймах. Эта единица измерения, равная 2/3 обычного дюйма, была введена со времен зарождения телевидения, когда приёмным элементом в телекамере служила электронная трубка («видикон»), а размер обозначал её диаметр (в который должен был вписываться с запасом снимаемый кадр).

Помимо этого необходимо помнить, что на некоторых режимах работы камеры часть пикселей матрицы не используется. Поэтому при определении угла обзора следует говорить не столько о размере матрицы, сколько о размере активной области матрицы.
Для наглядности приведем несколько примеров:

N1000 (Рис. 2): для всех возможных режимов работы активная область матрицы остается неизменной.


Рис. 2. N1000. 0.3 Мп, VGA, 1/4’’

Размер матрицы: 3.7 х 2.77мм, диагональ 4,62 мм=1/3.67 видиконовых дюйма (ближайшее значение 1/4’’).

N37210 (Рис. 3): в зависимости от режима работы активная область матрицы изменяется почти на 30% по вертикали и 25% по горизонтали.


Рис. 3. N37210. 2 Мп, FullHD, 1/2.7’’

Размер матрицы: 5.71 х 3.14 мм, диагональ 6.52 мм=1/2.6 видиконовых дюйма (ближайшее значение 1/2.7’’). При разрешении 1024х768 размер активной области матрицы уменьшается до 4.58 х 2.32 мм.

BD2570 (Рис. 4): в зависимости от режима работы активная область матрицы изменяется почти на 50% по вертикали и 25% по горизонтали.


Рис. 4. BD2570. 5 Мп, 1/2.5’’

Размер матрицы: 5.61 х 4.31 мм, диагональ 7.08 мм=1/2.39 видиконовых дюйма (ближайшее значение 1/2.5’’). При разрешении 1280х720 размер активной области матрицы уменьшается до 4.22 х 2.21 мм.

Из этих примеров видно, что величина матрицы может отличаться от указанной в паспорте, а размер ее активной области - меняться в зависимости от режима работы.

Однако, при вычислении угла обзора следует учитывать не только эту особенность, но и тот факт, что аберрации реального объектива приводят к усложнению расчетов.

В большинстве объективов, используемых в CCTV, повышение качества изображения осуществляется путем усложнением оптической системы с целью уменьшения аберраций, влияющих на разрешающую способность. Это часто приводит к увеличению геометрических аберраций, таких как дисторсия (рис. 5), воспринимаемых как побочный эффект. 


Рис. 5. Идеальное изображение без дисторсии (а), изображение с дисторсией типа «подушка» (б), изображение с дисторсией типа «бочка» (в)

Например, положительная дисторсия сокращает угол обзора непропорционально быстро при уменьшении активной области матрицы (синяя рамка на рис. 6). 


Рис. 6. Кадры, сделанные объективом с дисторсией (а) и объективом без дисторсии (б)

Этот эффект наблюдается как при смене режимов работы одной и той же камеры, так и при установке объектива на матрицы разных форматов. Например, видимый угол обзора у 8-мм дисторзирующего объектива на матрице ? может быть как у 6-мм, а на матрице 1/3 - как у 7-мм.

Непропорциональное уменьшение угла обзора реального объектива с положительной дисторсией объясняется смещением фокальной плоскости в центре кадра, в отличие от идеального объектива (рис. 7), для которого верны соотношения

 

Рис. 7. Оптическая схема идеального объектива (а) и реального объектива с положительной дисторсией (б)

Таким образом, спрогнозировать, какими будут качество и масштаб видеоизображения для пары «камера-объектив» можно достаточно точно только если учитывать все влияющие на это параметры видеосистемы. Универсальный калькулятор BEWARD позволяет не просто вычислить области видимости и углы обзора, но и подобрать подходящие объективы для камер BEWARD.

 

Опубликовано: Сайт Secuteck.Ru-2013
Посещений: 17758

  Автор

 

Ратушняк Виктор Сергеевич

кандидат технических наук
Заместитель директора по НИОКР
Beward

Всего статей:  1

В рубрику "Видеонаблюдение (CCTV)" | К списку рубрик  |  К списку авторов  |  К списку публикаций